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It is shown that, when two trains of waves in deep water interact, the phase 
velocity of each is modified by the presence of the other. The change in phase 
velocity is of second order and is distinct from the increase predicted by Stokes 
for a single wave train. When the wave trains are moving in the same direction, 
the increase in velocity Ac, of the wave with amplitude a,, wave-number k, 
and frequency CT, resulting from the interaction with the wave (a,, lc,, CTJ is given 
by Ac, = a2,klcr,, provided k, < lc,. If lc, > k,, then Ac, is given by the same 
expression multiplied by k,lk,. If the directions of propagation are opposed, 
the phase velocities are decreased by the same amount. These expressions are 
extended to give the increase (or decrease) in velocity due to a continuous 
spectrum of waves all travelling in the same (or opposite) direction. 

1. Introduction 
It has recently been shown (Phillips 1960) that, in the third approximation 

to the theory of gravity waves of small amplitude, certain unexpected effects 
occur. For example, there exist sets of three primary wave trains which interact 
to give a continuous transfer of energy to a fourth train whose amplitude in- 
creases linearly with time. More recently, Longuet-Higgins (1962) calculated 
explicitly the coupling constant when two of the three primary wave-numbers 
coincide. In  these two papers, attention was directed towards situations in 
which the tertiary wave-number k,, say, is distinct from the three primary wave- 
numbers k,, k, and k,. This is sufficient to ensure that the interaction represents 
a genuine energy transfer to a new component of the wave field. However, there 
exist cases in which the wave-number k, of the tertiary wave is the same as that 
of one of the primary waves, say k,. The present note is concerned with such 
situations; it is shown below that tertiary waves of this kind are in quadrature 
with the corresponding primary wave, so that the result is not to produce a 
t.ransfer of energy, but a modification of the phase velocity of the component with 
wave-number k,. 

Both these effects, the energy transfer and the phase-velocity changes, can be 
attributed to a type of resonant interaction which occurs when the wave-numbers 
are related by the equation 

kl+k ,+k ,+k ,=  0, (1.1) 
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crlkC2i-cr~i-cr4 = 0. 

where the same combination of signs is to be taken in each relation and 

ern = (9 IklLI}* (n = 132, 3 ,4) .  

If the tertiary wave-number k, equals k,, one of the primary wave-numbers, 
it  is clear that the resonance conditions (1.1) and (1.2) can be satisfied if k, = k,; 
that is, if the four wave-numbers are equal in pairs. The authors believe that, this 
is the most general case which results in phase-velocity modificati0ns.f The 
increase in velocity of a single wave train at the third-order approximation can 
be considered as the case in which all the wave-numbers coincide. 

The following section makes use of the method developed by Longuet-Higgins 
(1961). In  the final section, the results are extended to the situation in which 
a whole spectrum of parallel wave-numbers is present. 

The presence of a possible second-order vorticity is ignored in this paper, but, 
to the third approximation, its influence on the phase velocity can be simply 
superimposed on the effects considered here. 

2. The phase velocity effect 
It will be convenient to refer directly to the equations derived by Longuet- 

Higgins (1961), which will be identified by the initials LH. The same notation 
will be used. The boundary condition at  the mean free surface for the velocity 
potential resulting from the interaction of the two wave trains is given by 
equation (LH 3.11), i.e. 

+ulo*v(u,o.uo,) +uol.v(gu;,), (2.1) 

in which the water depth is assumed to be large compared with any of the wave- 
lengths involved, and all terms are taken at  x = 0. Complete expressions for the 
various terms on the right-hand side are given in (LH 3.12) to (LH 3.16); here 
we are interested in the terms proportional to sin $,. Omitting the others, one 
finds from these equations that 

+ (cr, + cr2) I k, + k,[ sin2 4/31 sin @,, 

h ( 2 ~ l l . ~ 1 0 )  = 2a,cr,a,[A Ik,-k,l sin2~a+BIk,+k,l  sin2&3]sin$,, 
ot 

(2.2) 

(2.3) 
a 

a 2  
f: 10 ~ ax at (2u10. uol) = a~azcrla;(kl + k,) (c, cos 0- c,) sin $,, 12.4) 

ulo.V(ulo.uol) = u~a2cr~crZ(k1+k2cos2+0 sin2+/3)sin$,, ( 2 . 5 )  

U ~ ~ . V ( ~ U ; ~ )  = a~a,cr~crz2klsin$2, (2.6) 

7 It is possible to have k, = k, and k, + k,, but in this case the phase difference between 
k, and k, is not generally ?p. 
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where the functions A and B are given by (LH3.10) and the angles 01, p and 8 
are illustrated in LH figure 1. It follows that the contribution at  wave-number 
k, of the interaction is given by 

- 

where 

+ ul(kl - k, + k, cos2 $8 sin2 48) + u2(kl + k,) COB 81 . (2.8) 

The surface displacement corresponding to this contribution is found in a 
manner similar to LH 5 4, and 

Q1 N (K’t/Zg) sin $, = (K’t/2g) sin (k,. x - cr,t), (2.9) 

apart from bounded third-order terms. The other components in the wave field 
having wave-number k, are the primary wave 

co, -- “ZCOS$,, 

and the tertiary self-interaction term 

Co3 = +az(az k,), IT, t sin 9, 
(see, for example, Phillips 1960,s 5.1). Thus the total component of wave-number 
k, is given by 

COl + Yo3 + 6 1  = a,{cos $2 + [K‘(2ga,a,)-1 + 4@;1 ( g 2 t )  sin $2) 

= CC, cos {k, . x - [ 1 + (2gg,a2)-l K’ + $(az k,)’]  IT,^), (2.10) 

over a sufficient time interval. The change in the phase velocity of wave 2 
resulting from its interaction with wave 1 is therefore 

(2.11) 

where the function K‘ is given in (2.8) above. Since K’ is proportional to a, 
this change in phase velocity is thus independent of the amplitude of wave 2, 
whereas, of course, the additional Stokes effect is proportional to ( ~ , k , ) ~ .  

3. Parallel primary waves 
The expression (2.8) simplifies considerably if the wave-numbers k, and k, 

are parallel. If k, < k, then from LH figure 1, 8 = 01 = 0, p = n, and, from (2.8), 

K’ = a;u21TlIT2[(cTl - IT,) (k, - k,) + u,(k, - k,) + (r,(k, + kg)] = 2a;a,k,cT,IT;, 

and Ac, = a2,klul, (3.1) 

from (2.11). In  this pa,rticular case, the increase in phase velocity is independent 
of the wave-number of wave 2 as well as its amplitude, and in fact, equals the 
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mass-transport at the surface of wave 1. This is a curious result, and at first 
sight suggests that the interaction can be considered physically as a simple 
convection of the second wave with the mass-transport velocity induced by the 
first. However, such a concept is likely to be misleading, since it would lead us 
to expect that the distribution of mass-transport velocity with depth would be 
important, particularly when k, and k, are of comparable magnitude. 

If k,  > k,  and the vectors are parallel, then 0 = 0, a = ,8 = n-, and 

I K = a ~ a a ~ 1 0 - e [ ( 0 - 1 - ~ 2 ) ( k l - k 2 )  40-1 0-2 

(0-, - 0 ; ) 2  - 0-2, + u; 
+ ~ l ( k l - k , ) + ~ , ( k , + k , )  = 2 a ~ a 2 k , 0 - , a ~ ,  (3.2) 1 

after a little algebra. Consequently 

Ac, = a;0-,k2, (3.3) 

or k,/k,  times the mass-transport velocity at  the surface of wave 1. Clearly, in 
this case the idea of a simple convection fails, and the increase in c, is independent 
of the wave-number of wave 1. It can be shown likewise that, if the directions 
of k, and k, are opposite, the change Ac, has the magnitude (3.1) or (3.3) depend- 
ing on the ratio of the wave-number magnitudes, but has the opposite sign, and 
so represents a decrease in the phase velocity of the wave trains. 

4. A continuous spectrum of parallel waves 
The expressions (3.1) and (3.3) can be extended readily to give the increase 

in velocity of a single sine wave (a2, k,, c2) resulting from the interaction with a 
continuous spectrum of waves all travelling in the same direction. If 

o+du 
4a2, = E(cr)dg, 

U 

then Ac, = loua 2 E ( 4  0-kd0-+ luy 2E(a) O-kzdg, 

If the single sine wave is moving in the opposite direction to the waves in the 
continuous spectrum, then the velocity of the single wave decreases by the 
amount (4.1). 
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